Nuprl Lemma : geo-O_wf
∀e:EuclideanPlaneStructure. (O ∈ Point)
Proof
Definitions occuring in Statement : 
geo-O: O
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
top: Top
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
geo-O: O
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
euclidean-plane-structure_wf, 
equal_wf, 
pi1_wf_top, 
geo-sep_wf, 
sq_exists_wf, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
exists_wf, 
geo-nontrivial_wf
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlaneStructure.  (O  \mmember{}  Point)
Date html generated:
2017_10_02-PM-03_28_24
Last ObjectModification:
2017_08_04-PM-08_49_47
Theory : euclidean!plane!geometry
Home
Index