Nuprl Lemma : geo-nontrivial_wf
∀[g:EuclideanPlaneStructure]. (geo-nontrivial(g) ∈ ∃a:Point. (∃b:{Point| a ≠ b}))
Proof
Definitions occuring in Statement : 
geo-nontrivial: geo-nontrivial(e), 
euclidean-plane-structure: EuclideanPlaneStructure, 
geo-sep: a ≠ b, 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
sq_exists: ∃x:{A| B[x]}, 
exists: ∃x:A. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
implies: P ⇒ Q, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
sq_exists: ∃x:{A| B[x]}, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
btrue: tt, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
subtype_rel: A ⊆r B, 
record-select: r.x, 
record+: record+, 
euclidean-plane-structure: EuclideanPlaneStructure, 
geo-nontrivial: geo-nontrivial(e), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
euclidean-plane-structure_wf, 
geo-gt_wf, 
geo-ge_wf, 
geo-colinear_wf, 
sq_exists_wf, 
exists_wf, 
or_wf, 
geo-left_wf, 
geo-sep_wf, 
sq_stable_wf, 
all_wf, 
geo-congruent_wf, 
geo-between_wf, 
stable_wf, 
geo-point_wf, 
uall_wf, 
subtype_rel_self
Rules used in proof : 
axiomEquality, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
productElimination, 
productEquality, 
lambdaFormation, 
because_Cache, 
rename, 
setElimination, 
setEquality, 
hypothesisEquality, 
lambdaEquality, 
isectElimination, 
extract_by_obid, 
tokenEquality, 
applyEquality, 
hypothesis, 
thin, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:EuclideanPlaneStructure].  (geo-nontrivial(g)  \mmember{}  \mexists{}a:Point.  (\mexists{}b:\{Point|  a  \mneq{}  b\}))
Date html generated:
2017_10_02-PM-03_28_20
Last ObjectModification:
2017_08_04-PM-08_49_18
Theory : euclidean!plane!geometry
Home
Index