Nuprl Lemma : geo-nontrivial_wf

[g:EuclideanPlaneStructure]. (geo-nontrivial(g) ∈ ∃a:Point. (∃b:{Point| a ≠ b}))


Proof




Definitions occuring in Statement :  geo-nontrivial: geo-nontrivial(e) euclidean-plane-structure: EuclideanPlaneStructure geo-sep: a ≠ b geo-point: Point uall: [x:A]. B[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  implies:  Q and: P ∧ Q exists: x:A. B[x] sq_exists: x:{A| B[x]} or: P ∨ Q all: x:A. B[x] prop: so_apply: x[s] so_lambda: λ2x.t[x] btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ euclidean-plane-structure: EuclideanPlaneStructure geo-nontrivial: geo-nontrivial(e) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  euclidean-plane-structure_wf geo-gt_wf geo-ge_wf geo-colinear_wf sq_exists_wf exists_wf or_wf geo-left_wf geo-sep_wf sq_stable_wf all_wf geo-congruent_wf geo-between_wf stable_wf geo-point_wf uall_wf subtype_rel_self
Rules used in proof :  axiomEquality equalitySymmetry equalityTransitivity functionEquality productElimination productEquality lambdaFormation because_Cache rename setElimination setEquality hypothesisEquality lambdaEquality isectElimination extract_by_obid tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination dependentIntersectionElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:EuclideanPlaneStructure].  (geo-nontrivial(g)  \mmember{}  \mexists{}a:Point.  (\mexists{}b:\{Point|  a  \mneq{}  b\}))



Date html generated: 2017_10_02-PM-03_28_20
Last ObjectModification: 2017_08_04-PM-08_49_18

Theory : euclidean!plane!geometry


Home Index