Step * of Lemma geo-left_functionality

No Annotations
e:EuclideanPlane. ∀a1,a2,b1,b2,c1,c2:Point.  (a1 ≡ a2  b1 ≡ b2  c1 ≡ c2  (a1 leftof b1c1 ⇐⇒ a2 leftof b2c2))
BY
(((D THENA Auto) THEN (InstLemma  `geo-sep-sym` [⌜e⌝] ⋅ THENA Auto))
   THEN (Assert ⌜∀a1,a2,b1,b2,c1,c2:Point.  (a1 ≡ a2  b1 ≡ b2  c1 ≡ c2  a1 leftof b1c1  a2 leftof b2c2)⌝⋅
        THENM (Auto THEN InstHyp [⌜a2⌝;⌜a1⌝;⌜b2⌝;⌜b1⌝;⌜c2⌝;⌜c1⌝3⋅ THEN Auto)
        )
   }

1
.....assertion..... 
1. EuclideanPlane
2. ∀a,b:Point.  (a  a)
⊢ ∀a1,a2,b1,b2,c1,c2:Point.  (a1 ≡ a2  b1 ≡ b2  c1 ≡ c2  a1 leftof b1c1  a2 leftof b2c2)


Latex:


Latex:
No  Annotations
\mforall{}e:EuclideanPlane.  \mforall{}a1,a2,b1,b2,c1,c2:Point.
    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  (a1  leftof  b1c1  \mLeftarrow{}{}\mRightarrow{}  a2  leftof  b2c2))


By


Latex:
(((D  0  THENA  Auto)  THEN  (InstLemma    `geo-sep-sym`  [\mkleeneopen{}e\mkleeneclose{}]  \mcdot{}  THENA  Auto))
  THEN  (Assert  \mkleeneopen{}\mforall{}a1,a2,b1,b2,c1,c2:Point.
                                  (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  a1  leftof  b1c1  {}\mRightarrow{}  a2  leftof  b2c2)\mkleeneclose{}\mcdot{}
            THENM  (Auto  THEN  InstHyp  [\mkleeneopen{}a2\mkleeneclose{};\mkleeneopen{}a1\mkleeneclose{};\mkleeneopen{}b2\mkleeneclose{};\mkleeneopen{}b1\mkleeneclose{};\mkleeneopen{}c2\mkleeneclose{};\mkleeneopen{}c1\mkleeneclose{}]  3\mcdot{}  THEN  Auto)
            )
  )




Home Index