Step
*
1
1
1
of Lemma
geo-line-sep-symmetry
1. g : EuclideanParPlane
2. l : Line
3. m : Line
4. p : Point
5. Colinear(p;fst(l);fst(snd(l)))
6. p # fst(m)fst(snd(m))
7. ∀L,M,N:Line. (L \/ M
⇒ (L \/ N ∨ M \/ N))
8. l2 : Line
9. p ≡ fst(l2)
10. fst(m) ≡ fst(snd(l2))
11. l1 : Line
12. p ≡ fst(l1)
13. fst(snd(m)) ≡ fst(snd(l1))
14. l1 \/ l2
⇒ ((l1 # l2) ∧ (∃x:Point. (x I l1 ∧ x I l2)))
15. ∀L,M,N:Line. (L \/ M
⇒ (L \/ N ∨ M \/ N))
⊢ (l1 # l2)
BY
{ (Unfold `geo-line-sep` 0 THEN InstConcl [⌜fst(snd(m))⌝]⋅ THEN Auto) }
1
1. g : EuclideanParPlane
2. l : Line
3. m : Line
4. p : Point
5. Colinear(p;fst(l);fst(snd(l)))
6. p # fst(m)fst(snd(m))
7. ∀L,M,N:Line. (L \/ M
⇒ (L \/ N ∨ M \/ N))
8. l2 : Line
9. p ≡ fst(l2)
10. fst(m) ≡ fst(snd(l2))
11. l1 : Line
12. p ≡ fst(l1)
13. fst(snd(m)) ≡ fst(snd(l1))
14. l1 \/ l2
⇒ ((l1 # l2) ∧ (∃x:Point. (x I l1 ∧ x I l2)))
15. ∀L,M,N:Line. (L \/ M
⇒ (L \/ N ∨ M \/ N))
16. Colinear(fst(snd(m));fst(l1);fst(snd(l1)))
⊢ fst(snd(m)) # fst(l2)fst(snd(l2))
Latex:
Latex:
1. g : EuclideanParPlane
2. l : Line
3. m : Line
4. p : Point
5. Colinear(p;fst(l);fst(snd(l)))
6. p \# fst(m)fst(snd(m))
7. \mforall{}L,M,N:Line. (L \mbackslash{}/ M {}\mRightarrow{} (L \mbackslash{}/ N \mvee{} M \mbackslash{}/ N))
8. l2 : Line
9. p \mequiv{} fst(l2)
10. fst(m) \mequiv{} fst(snd(l2))
11. l1 : Line
12. p \mequiv{} fst(l1)
13. fst(snd(m)) \mequiv{} fst(snd(l1))
14. l1 \mbackslash{}/ l2 {}\mRightarrow{} ((l1 \# l2) \mwedge{} (\mexists{}x:Point. (x I l1 \mwedge{} x I l2)))
15. \mforall{}L,M,N:Line. (L \mbackslash{}/ M {}\mRightarrow{} (L \mbackslash{}/ N \mvee{} M \mbackslash{}/ N))
\mvdash{} (l1 \# l2)
By
Latex:
(Unfold `geo-line-sep` 0 THEN InstConcl [\mkleeneopen{}fst(snd(m))\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index