Nuprl Lemma : geo-lt-angle-or

e:EuclideanPlane. ∀b,y:Point. ∀a,c:{p:Point| b} . ∀x,z:{q:Point| y} .  (¬¬(xyz < abc ∨ abc < xyz ∨ abc ≅a xyz))


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-sep: b geo-point: Point all: x:A. B[x] not: ¬A or: P ∨ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False or: P ∨ Q member: t ∈ T prop: uall: [x:A]. B[x] basic-geometry: BasicGeometry subtype_rel: A ⊆B guard: {T} uimplies: supposing a stable: Stable{P} iff: ⇐⇒ Q and: P ∧ Q geo-lsep: bc exists: x:A. B[x] cand: c∧ B geo-out: out(p ab) geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m geo-lt-angle: abc < xyz geo-colinear: Colinear(a;b;c) oriented-plane: OrientedPlane geo-eq: a ≡ b rev_implies:  Q geo-strict-between: a-b-c basic-geometry-: BasicGeometry- geo-cong-angle: abc ≅a xyz

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}b,y:Point.  \mforall{}a,c:\{p:Point|  p  \#  b\}  .  \mforall{}x,z:\{q:Point|  q  \#  y\}  .
    (\mneg{}\mneg{}(xyz  <  abc  \mvee{}  abc  <  xyz  \mvee{}  abc  \mcong{}\msuba{}  xyz))



Date html generated: 2020_05_20-AM-10_41_37
Last ObjectModification: 2020_01_13-PM-05_30_17

Theory : euclidean!plane!geometry


Home Index