Step
*
of Lemma
geo-out-interior-point-exists
∀g:EuclideanPlane. ∀a,b,c,a',c',x:Point.
(a # bc
⇒ out(b aa')
⇒ out(b cc')
⇒ a-x-c
⇒ (∃x':Point. (((a'-x'-c' ∧ out(b xx')) ∧ abx ≅a a'bx') ∧ cbx ≅a c'bx')))
BY
{ (Auto THEN (Assert a # bx BY (InstLemma `colinear-lsep` [⌜g⌝;⌜c⌝;⌜a⌝;⌜b⌝;⌜x⌝]⋅ THEN Auto)) THEN D -1) }
1
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. a' : Point
6. c' : Point
7. x : Point
8. a # bc
9. out(b aa')
10. out(b cc')
11. a-x-c
12. a leftof bx
⊢ ∃x':Point. (((a'-x'-c' ∧ out(b xx')) ∧ abx ≅a a'bx') ∧ cbx ≅a c'bx')
2
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. a' : Point
6. c' : Point
7. x : Point
8. a # bc
9. out(b aa')
10. out(b cc')
11. a-x-c
12. a leftof xb
⊢ ∃x':Point. (((a'-x'-c' ∧ out(b xx')) ∧ abx ≅a a'bx') ∧ cbx ≅a c'bx')
Latex:
Latex:
\mforall{}g:EuclideanPlane. \mforall{}a,b,c,a',c',x:Point.
(a \# bc
{}\mRightarrow{} out(b aa')
{}\mRightarrow{} out(b cc')
{}\mRightarrow{} a-x-c
{}\mRightarrow{} (\mexists{}x':Point. (((a'-x'-c' \mwedge{} out(b xx')) \mwedge{} abx \mcong{}\msuba{} a'bx') \mwedge{} cbx \mcong{}\msuba{} c'bx')))
By
Latex:
(Auto
THEN (Assert a \# bx BY
(InstLemma `colinear-lsep` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THEN Auto))
THEN D -1)
Home
Index