Nuprl Lemma : geo-out-interior-point-exists
∀g:EuclideanPlane. ∀a,b,c,a',c',x:Point.
  (a # bc
  
⇒ out(b aa')
  
⇒ out(b cc')
  
⇒ a-x-c
  
⇒ (∃x':Point. (((a'-x'-c' ∧ out(b xx')) ∧ abx ≅a a'bx') ∧ cbx ≅a c'bx')))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
geo-lsep: a # bc
, 
or: P ∨ Q
, 
prop: ℙ
, 
oriented-plane: OrientedPlane
, 
basic-geometry-: BasicGeometry-
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
colinear-lsep, 
lsep-all-sym, 
geo-sep-sym, 
geo-strict-between-sep2, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-colinear-is-colinear-set, 
geo-strict-between-implies-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
istype-false, 
istype-le, 
istype-less_than, 
geo-strict-between_wf, 
geo-out_wf, 
geo-lsep_wf, 
geo-point_wf, 
left-between-implies-right1, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
euclidean-plane-axioms, 
geo-strict-between-sep3, 
geo-left-out-2, 
geo-left-out-3, 
use-plane-sep_strict, 
geo-cong-angle_wf, 
left-all-symmetry, 
left-convex2, 
geo-between_wf, 
geo-sep_wf, 
geo-colinear-left-out3, 
geo-strict-between-sym, 
geo-left-out-4, 
geo-cong-angle-refl, 
geo-out_weakening, 
left-implies-sep, 
geo-eq_weakening, 
lsep-implies-sep, 
out-preserves-angle-cong_1, 
left-between-implies-right2, 
left-convex
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
productElimination, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productIsType, 
unionElimination, 
universeIsType, 
inhabitedIsType, 
rename, 
dependent_pairFormation_alt, 
inlFormation_alt
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,a',c',x:Point.
    (a  \#  bc
    {}\mRightarrow{}  out(b  aa')
    {}\mRightarrow{}  out(b  cc')
    {}\mRightarrow{}  a-x-c
    {}\mRightarrow{}  (\mexists{}x':Point.  (((a'-x'-c'  \mwedge{}  out(b  xx'))  \mwedge{}  abx  \mcong{}\msuba{}  a'bx')  \mwedge{}  cbx  \mcong{}\msuba{}  c'bx')))
Date html generated:
2019_10_16-PM-02_00_24
Last ObjectModification:
2018_10_25-AM-10_03_49
Theory : euclidean!plane!geometry
Home
Index