Nuprl Lemma : geo-cong-angle-refl

e:BasicGeometry. ∀a,b,c:Point.  (a ≠  b ≠  abc ≅a abc)


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry exists: x:A. B[x]
Lemmas referenced :  geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-between-trivial geo-congruent-refl geo-between_wf geo-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis independent_pairFormation sqequalHypSubstitution productElimination thin universeIsType introduction extract_by_obid isectElimination hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType dependent_functionElimination productIsType dependent_pairFormation_alt

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    (a  \mneq{}  b  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  abc  \mcong{}\msuba{}  abc)



Date html generated: 2019_10_16-PM-01_22_09
Last ObjectModification: 2018_11_07-PM-00_52_39

Theory : euclidean!plane!geometry


Home Index