Nuprl Lemma : geo-left-out-4
∀e:EuclideanPlane. ∀a,b,p,a',b':Point.  (p leftof ab ⇒ out(p aa') ⇒ out(p bb') ⇒ p leftof a'b')
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
euclidean-plane: EuclideanPlane, 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
guard: {T}, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
basic-geometry: BasicGeometry, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a
Lemmas referenced : 
left-all-symmetry, 
geo-left-out-2, 
geo-left-out, 
euclidean-plane-axioms, 
geo-out_wf, 
geo-left_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
universeIsType, 
isectElimination, 
sqequalRule, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
because_Cache
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,p,a',b':Point.    (p  leftof  ab  {}\mRightarrow{}  out(p  aa')  {}\mRightarrow{}  out(p  bb')  {}\mRightarrow{}  p  leftof  a'b')
Date html generated:
2019_10_16-PM-01_25_24
Last ObjectModification:
2018_10_25-AM-09_54_45
Theory : euclidean!plane!geometry
Home
Index