Nuprl Lemma : left-all-symmetry
∀g:EuclideanPlane. ∀a,b,c:Point.  (a leftof bc ⇒ {b leftof ca ∧ c leftof ab})
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-left: a leftof bc, 
geo-point: Point, 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a
Lemmas referenced : 
euclidean-plane-axioms, 
geo-left_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  \{b  leftof  ca  \mwedge{}  c  leftof  ab\})
Date html generated:
2018_05_22-AM-11_53_49
Last ObjectModification:
2018_04_17-PM-03_21_35
Theory : euclidean!plane!geometry
Home
Index