Nuprl Lemma : left-implies-sep

g:EuclideanPlane. ∀a,b,c:Point.  (a leftof bc  {a ≠ b ∧ a ≠ c ∧ b ≠ c})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-left: leftof bc geo-sep: a ≠ b geo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: cand: c∧ B and: P ∧ Q member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-left_wf euclidean-plane-axioms geo-sep-sym
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality isectElimination because_Cache independent_functionElimination independent_pairFormation hypothesis productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  \{a  \mneq{}  b  \mwedge{}  a  \mneq{}  c  \mwedge{}  b  \mneq{}  c\})



Date html generated: 2017_10_02-PM-03_29_25
Last ObjectModification: 2017_08_07-AM-10_49_51

Theory : euclidean!plane!geometry


Home Index