Nuprl Lemma : out-preserves-angle-cong_1
∀e:BasicGeometry. ∀a,b,c,a',b',c',p,q,p',q':Point.
  (abc ≅a a'b'c' 
⇒ out(b cq) 
⇒ out(b ap) 
⇒ out(b' c'q') 
⇒ out(b' a'p') 
⇒ pbq ≅a p'b'q')
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
geo-cong-angle: abc ≅a xyz
, 
basic-geometry: BasicGeometry
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
basic-geometry: BasicGeometry
, 
geo-out: out(p ab)
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
cong-angle-out-exists3, 
geo-sep-sym, 
geo-out_wf, 
geo-cong-angle_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-out_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
productElimination, 
universeIsType, 
isectElimination, 
inhabitedIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',b',c',p,q,p',q':Point.
    (abc  \mcong{}\msuba{}  a'b'c'  {}\mRightarrow{}  out(b  cq)  {}\mRightarrow{}  out(b  ap)  {}\mRightarrow{}  out(b'  c'q')  {}\mRightarrow{}  out(b'  a'p')  {}\mRightarrow{}  pbq  \mcong{}\msuba{}  p'b'q')
Date html generated:
2019_10_16-PM-01_26_40
Last ObjectModification:
2018_10_09-AM-10_13_14
Theory : euclidean!plane!geometry
Home
Index