Nuprl Lemma : geo-out_transitivity
∀e:BasicGeometry. ∀a,b,c,d:Point.  (out(a bc) ⇒ out(a cd) ⇒ out(a bd))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
basic-geometry: BasicGeometry, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-out: out(p ab), 
and: P ∧ Q, 
not: ¬A, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
false: False, 
guard: {T}, 
uimplies: b supposing a, 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
basic-geometry-: BasicGeometry-, 
cand: A c∧ B
Lemmas referenced : 
geo-between_wf, 
istype-void, 
geo-out_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-between-symmetry, 
geo-between-inner-trans, 
geo-between-exchange3, 
subtype_rel_self, 
basic-geometry-_wf, 
geo-between-exchange4, 
geo-between-same-side, 
geo-between-middle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
hypothesis, 
independent_functionElimination, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
voidElimination, 
productIsType, 
functionIsType, 
inhabitedIsType, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (out(a  bc)  {}\mRightarrow{}  out(a  cd)  {}\mRightarrow{}  out(a  bd))
Date html generated:
2019_10_16-PM-01_23_08
Last ObjectModification:
2019_08_27-AM-09_57_48
Theory : euclidean!plane!geometry
Home
Index