Nuprl Lemma : geo-between-exchange3
∀e:BasicGeometry-. ∀[a,b,c,d:Point].  (b_c_d) supposing (a_c_d and a_b_c)
Proof
Definitions occuring in Statement : 
basic-geometry-: BasicGeometry-
, 
geo-between: a_b_c
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry-_wf, 
subtype_rel_transitivity, 
basic-geometry--subtype, 
geo-between_wf, 
geo-between-inner-trans, 
geo-between-symmetry
Rules used in proof : 
sqequalRule, 
instantiate, 
applyEquality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry-.  \mforall{}[a,b,c,d:Point].    (b\_c\_d)  supposing  (a\_c\_d  and  a\_b\_c)
Date html generated:
2017_10_02-PM-04_43_48
Last ObjectModification:
2017_08_05-AM-09_08_09
Theory : euclidean!plane!geometry
Home
Index