Nuprl Lemma : lsep-implies-sep

g:EuclideanPlane. ∀a,b,c:Point.  (a bc  {a ≠ b ∧ a ≠ c ∧ b ≠ c})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-sep: a ≠ b geo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: cand: c∧ B and: P ∧ Q guard: {T} member: t ∈ T or: P ∨ Q geo-lsep: bc implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-lsep_wf geo-sep-sym left-implies-sep
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality isectElimination because_Cache productElimination independent_pairFormation hypothesis independent_functionElimination hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin unionElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  \{a  \mneq{}  b  \mwedge{}  a  \mneq{}  c  \mwedge{}  b  \mneq{}  c\})



Date html generated: 2017_10_02-PM-03_29_28
Last ObjectModification: 2017_08_07-AM-10_50_16

Theory : euclidean!plane!geometry


Home Index