Nuprl Lemma : lsep-implies-sep
∀g:EuclideanPlane. ∀a,b,c:Point.  (a # bc 
⇒ {a ≠ b ∧ a ≠ c ∧ b ≠ c})
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
guard: {T}
, 
member: t ∈ T
, 
or: P ∨ Q
, 
geo-lsep: a # bc
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-lsep_wf, 
geo-sep-sym, 
left-implies-sep
Rules used in proof : 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
unionElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  \{a  \mneq{}  b  \mwedge{}  a  \mneq{}  c  \mwedge{}  b  \mneq{}  c\})
Date html generated:
2017_10_02-PM-03_29_28
Last ObjectModification:
2017_08_07-AM-10_50_16
Theory : euclidean!plane!geometry
Home
Index