Nuprl Lemma : lsep-all-sym

g:EuclideanPlane. ∀a,b,c:Point.  (a bc  {b ca ∧ ab ∧ cb ∧ ac ∧ ba})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T cand: c∧ B and: P ∧ Q implies:  Q all: x:A. B[x] guard: {T}
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-lsep_wf lsep-symmetry2 lsep-symmetry
Rules used in proof :  independent_isectElimination instantiate applyEquality isectElimination because_Cache independent_pairFormation productElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  \{b  \#  ca  \mwedge{}  c  \#  ab  \mwedge{}  a  \#  cb  \mwedge{}  b  \#  ac  \mwedge{}  c  \#  ba\})



Date html generated: 2017_10_02-PM-03_29_37
Last ObjectModification: 2017_08_07-AM-10_52_11

Theory : euclidean!plane!geometry


Home Index