Nuprl Lemma : lsep-symmetry

g:EuclideanPlane. ∀a,b,c:Point.  (a bc  (c ba ∧ ab))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T cand: c∧ B and: P ∧ Q implies:  Q all: x:A. B[x] or: P ∨ Q geo-lsep: bc
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-lsep_wf geo-left_wf left-symmetry
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction hypothesis independent_pairFormation cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inlFormation inrFormation independent_functionElimination dependent_functionElimination unionElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (c  \#  ba  \mwedge{}  c  \#  ab))



Date html generated: 2017_10_02-PM-03_29_33
Last ObjectModification: 2017_08_07-AM-10_51_15

Theory : euclidean!plane!geometry


Home Index