Nuprl Lemma : lsep-symmetry2

g:EuclideanPlane. ∀a,b,c:Point.  (a bc  cb)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T guard: {T} or: P ∨ Q geo-lsep: bc implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-lsep_wf geo-left_wf
Rules used in proof :  independent_isectElimination instantiate inlFormation because_Cache applyEquality hypothesisEquality isectElimination extract_by_obid introduction inrFormation hypothesis cut sqequalRule thin unionElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  a  \#  cb)



Date html generated: 2017_10_02-PM-03_29_35
Last ObjectModification: 2017_08_07-AM-10_51_42

Theory : euclidean!plane!geometry


Home Index