Nuprl Lemma : left-between-implies-right1

g:OrientedPlane. ∀a,b,x,y:Point.  (x leftof ab  x_b_y  y ≠  leftof ba)


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-left: leftof bc geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T oriented-plane: OrientedPlane guard: {T} and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] uimplies: supposing a geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m subtype_rel: A ⊆B iff: ⇐⇒ Q exists: x:A. B[x]
Lemmas referenced :  lsep-opposite-iff lsep-all-sym2 colinear-lsep-cycle geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf lsep-all-sym geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype oriented-plane-subtype subtype_rel_transitivity oriented-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-between_wf geo-left_wf geo-point_wf geo-colinear-same euclidean-plane-subtype-basic basic-geometry_wf geo-colinear_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination because_Cache hypothesis productElimination isectElimination independent_isectElimination sqequalRule isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed applyEquality instantiate dependent_pairFormation productEquality

Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,x,y:Point.    (x  leftof  ab  {}\mRightarrow{}  x\_b\_y  {}\mRightarrow{}  y  \mneq{}  b  {}\mRightarrow{}  y  leftof  ba)



Date html generated: 2018_05_22-AM-11_54_44
Last ObjectModification: 2018_04_17-PM-05_54_20

Theory : euclidean!plane!geometry


Home Index