Nuprl Lemma : colinear-lsep-cycle

g:EuclideanPlane. ∀a,b,c,y:Point.  (a bc  y ≠  Colinear(a;b;y)  bc)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B subtract: m cons: [a b] select: L[n] uall: [x:A]. B[x] true: True squash: T less_than: a < b prop: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-lsep_wf geo-sep_wf geo-colinear_wf lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-colinear-is-colinear-set colinear-lsep
Rules used in proof :  independent_isectElimination instantiate applyEquality because_Cache isectElimination baseClosed imageMemberEquality independent_pairFormation natural_numberEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality sqequalRule independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \mneq{}  b  {}\mRightarrow{}  Colinear(a;b;y)  {}\mRightarrow{}  y  \#  bc)



Date html generated: 2017_10_02-PM-04_47_14
Last ObjectModification: 2017_08_07-PM-00_02_14

Theory : euclidean!plane!geometry


Home Index