Nuprl Lemma : colinear-lsep
∀g:EuclideanPlane. ∀a,b,c,y:Point.  (a # bc ⇒ y ≠ b ⇒ Colinear(y;a;b) ⇒ y # bc)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-colinear: Colinear(a;b;c), 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
cand: A c∧ B, 
and: P ∧ Q, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
euclidean-plane_wf, 
euclidean-plane-axioms
Rules used in proof : 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \mneq{}  b  {}\mRightarrow{}  Colinear(y;a;b)  {}\mRightarrow{}  y  \#  bc)
Date html generated:
2017_10_02-PM-03_29_23
Last ObjectModification:
2017_08_07-AM-10_47_12
Theory : euclidean!plane!geometry
Home
Index