Nuprl Lemma : colinear-lsep

g:EuclideanPlane. ∀a,b,c,y:Point.  (a bc  y ≠  Colinear(y;a;b)  bc)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  cand: c∧ B and: P ∧ Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  euclidean-plane_wf euclidean-plane-axioms
Rules used in proof :  productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,y:Point.    (a  \#  bc  {}\mRightarrow{}  y  \mneq{}  b  {}\mRightarrow{}  Colinear(y;a;b)  {}\mRightarrow{}  y  \#  bc)



Date html generated: 2017_10_02-PM-03_29_23
Last ObjectModification: 2017_08_07-AM-10_47_12

Theory : euclidean!plane!geometry


Home Index