Step * of Lemma geo-parallel-points-symmetry2

e:EuclideanPlane. ∀a,b,c,d:Point.
  (geo-parallel-points(e;a;b;c;d)
   (geo-parallel-points(e;b;a;c;d) ∧ geo-parallel-points(e;a;b;d;c) ∧ geo-parallel-points(e;b;a;d;c)))
BY
((Auto THEN -1 THEN THEN (D THENA Auto) THEN -2 THEN Auto) THEN ExRepD) }

1
1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. a ≠ b
7. c ≠ d
8. {z:Point| Colinear(z;b;a)} 
9. {z:Point| Colinear(z;b;a)} 
10. leftof cd
11. leftof dc
⊢ ∃x,y:{z:Point| Colinear(z;a;b)} (x leftof cd ∧ leftof dc)

2
1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. geo-parallel-points(e;a;b;c;d)
7. b ≠ a
8. c ≠ d
9. {z:Point| Colinear(z;a;b)} 
10. {z:Point| Colinear(z;a;b)} 
11. leftof dc
12. leftof cd
⊢ ∃x,y:{z:Point| Colinear(z;b;a)} (x leftof cd ∧ leftof dc)

3
1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. geo-parallel-points(e;a;b;c;d)
7. geo-parallel-points(e;b;a;c;d)
8. a ≠ b
9. d ≠ c
10. {z:Point| Colinear(z;b;a)} 
11. {z:Point| Colinear(z;b;a)} 
12. leftof dc
13. leftof cd
⊢ ∃x,y:{z:Point| Colinear(z;a;b)} (x leftof dc ∧ leftof cd)


Latex:


Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (geo-parallel-points(e;a;b;c;d)
    {}\mRightarrow{}  (geo-parallel-points(e;b;a;c;d)
          \mwedge{}  geo-parallel-points(e;a;b;d;c)
          \mwedge{}  geo-parallel-points(e;b;a;d;c)))


By


Latex:
((Auto  THEN  D  -1  THEN  D  0  THEN  (D  0  THENA  Auto)  THEN  D  -2  THEN  Auto)  THEN  ExRepD)




Home Index