Nuprl Lemma : geo-parallel-points-symmetry2

e:EuclideanPlane. ∀a,b,c,d:Point.
  (geo-parallel-points(e;a;b;c;d)
   (geo-parallel-points(e;b;a;c;d) ∧ geo-parallel-points(e;a;b;d;c) ∧ geo-parallel-points(e;b;a;d;c)))


Proof




Definitions occuring in Statement :  geo-parallel-points: geo-parallel-points(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B geo-parallel-points: geo-parallel-points(e;a;b;c;d) member: t ∈ T not: ¬A exists: x:A. B[x] false: False uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m
Lemmas referenced :  geo-sep-sym geo-colinear_wf geo-left_wf geo-parallel-points_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf subtype_rel_sets_simple geo-colinear-is-colinear-set length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution productElimination thin independent_pairFormation introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis voidElimination sqequalRule productIsType setIsType because_Cache universeIsType isectElimination applyEquality setElimination rename instantiate independent_isectElimination inhabitedIsType dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (geo-parallel-points(e;a;b;c;d)
    {}\mRightarrow{}  (geo-parallel-points(e;b;a;c;d)
          \mwedge{}  geo-parallel-points(e;a;b;d;c)
          \mwedge{}  geo-parallel-points(e;b;a;d;c)))



Date html generated: 2019_10_16-PM-01_47_14
Last ObjectModification: 2019_08_23-PM-10_05_42

Theory : euclidean!plane!geometry


Home Index