Step * 2 of Lemma greatest-cevian-is-farthest-from-perp

.....aux..... 
1. EuclideanPlane
2. Point
3. Point
4. Point
5. Point
6. bc
7. ad  ⊥bc
8. {x:Point| Colinear(b;c;x)} 
9. {x:Point| Colinear(b;c;x)} 
10. d-x-y
11. c ≠ d
⊢ dx
BY
((InstLemma `colinear-lsep` [⌜e⌝;⌜b⌝;⌜c⌝;⌜a⌝;⌜d⌝]⋅ THEN Auto)
   THEN (D THEN Auto)
   THEN (InstLemma `colinear-lsep` [⌜e⌝;⌜c⌝;⌜d⌝;⌜a⌝;⌜x⌝]⋅ THEN Auto)
   THEN DSetVars
   THEN Auto) }


Latex:


Latex:
.....aux..... 
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  d  :  Point
6.  a  \#  bc
7.  ad    \mbot{}d  bc
8.  x  :  \{x:Point|  Colinear(b;c;x)\} 
9.  y  :  \{x:Point|  Colinear(b;c;x)\} 
10.  d-x-y
11.  c  \mneq{}  d
\mvdash{}  a  \#  dx


By


Latex:
((InstLemma  `colinear-lsep`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{}]\mcdot{}  THEN  Auto)
  THEN  (D  7  THEN  Auto)
  THEN  (InstLemma  `colinear-lsep`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}  THEN  Auto)
  THEN  DSetVars
  THEN  Auto)




Home Index