Nuprl Lemma : greatest-cevian-is-farthest-from-perp
∀e:EuclideanPlane. ∀a,b,c,d:Point.  (a # bc 
⇒ ad  ⊥d bc 
⇒ (∀x,y:{x:Point| Colinear(b;c;x)} .  (d-x-y 
⇒ |ax| < |ay|)))
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd
, 
geo-lt: p < q
, 
geo-length: |s|
, 
geo-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-colinear: Colinear(a;b;c)
, 
geo-strict-between: a-b-c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
guard: {T}
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
, 
cand: A c∧ B
, 
geo-perp-in: ab  ⊥x cd
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
ge: i ≥ j 
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
geo-midpoint: a=m=b
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-lsep: a # bc
, 
geo-interior-point: I(abc;d)
Lemmas referenced : 
geo-sep-or, 
lsep-implies-sep, 
geo-sep_wf, 
geo-strict-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-colinear_wf, 
geo-perp-in_wf, 
geo-lsep_wf, 
geo-point_wf, 
colinear-lsep, 
lsep-all-sym, 
geo-sep-sym, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
geo-strict-between-sep2, 
sq_stable__colinear, 
geo-colinear-append, 
cons_wf, 
nil_wf, 
length_wf, 
select_wf, 
nat_properties, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
l_member_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
geo-proper-extend-exists, 
geo-reflected-right-triangles-congruent, 
geo-colinear-same, 
right-angle-symmetry, 
geo-strict-between-implies-between, 
geo-congruent-iff-length, 
geo-length-flip, 
colinear-lsep-cycle, 
geo-strict-between-sep1, 
geo-strict-between-implies-colinear, 
Euclid-Prop21, 
between-preserves-left-1, 
left-convex, 
geo-between_wf, 
left-all-symmetry, 
left-convex2, 
geo-between-symmetry, 
geo-strict-between-sep3, 
geo-add-length_wf, 
geo-lt_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
geo-lt-angle_wf, 
geo-add-length-lt-cancel-for-double, 
geo-length_wf1, 
geo-left-out-1, 
geo-between-out, 
between-preserves-left-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
universeIsType, 
isectElimination, 
applyEquality, 
sqequalRule, 
unionElimination, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
setIsType, 
isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
independent_pairFormation, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
productIsType, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
inrFormation_alt, 
applyLambdaEquality, 
hyp_replacement, 
productEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (a  \#  bc  {}\mRightarrow{}  ad    \mbot{}d  bc  {}\mRightarrow{}  (\mforall{}x,y:\{x:Point|  Colinear(b;c;x)\}  .    (d-x-y  {}\mRightarrow{}  |ax|  <  |ay|)))
Date html generated:
2019_10_16-PM-02_21_24
Last ObjectModification:
2019_03_20-PM-09_17_03
Theory : euclidean!plane!geometry
Home
Index