Nuprl Lemma : between-preserves-left-2
∀e:EuclideanPlane. ∀A,B,C,V:Point.  (C leftof AB 
⇒ A ≠ V 
⇒ A_V_B 
⇒ C leftof AV)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-left: a leftof bc
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
basic-geometry: BasicGeometry
, 
geo-out: out(p ab)
, 
uimplies: b supposing a
Lemmas referenced : 
euclidean-plane-axioms, 
geo-sep-sym, 
left-implies-sep, 
geo-left_wf, 
geo-sep_wf, 
istype-void, 
geo-eq_wf, 
geo-between_wf, 
geo-congruent_wf, 
geo-ge_wf, 
geo-lsep_wf, 
geo-colinear_wf, 
geo-between-out, 
geo-out_wf, 
geo-out_inversion, 
geo-left-out-better, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
universeIsType, 
isectElimination, 
applyEquality, 
sqequalRule, 
inhabitedIsType, 
productIsType, 
functionIsType, 
independent_pairFormation, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,V:Point.    (C  leftof  AB  {}\mRightarrow{}  A  \mneq{}  V  {}\mRightarrow{}  A\_V\_B  {}\mRightarrow{}  C  leftof  AV)
Date html generated:
2019_10_16-PM-01_32_21
Last ObjectModification:
2018_10_24-PM-02_05_52
Theory : euclidean!plane!geometry
Home
Index