Nuprl Lemma : between-preserves-left-2

e:EuclideanPlane. ∀A,B,C,V:Point.  (C leftof AB  A ≠  A_V_B  leftof AV)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-left: leftof bc geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q cand: c∧ B guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B prop: not: ¬A false: False iff: ⇐⇒ Q rev_implies:  Q basic-geometry: BasicGeometry geo-out: out(p ab) uimplies: supposing a
Lemmas referenced :  euclidean-plane-axioms geo-sep-sym left-implies-sep geo-left_wf geo-sep_wf istype-void geo-eq_wf geo-between_wf geo-congruent_wf geo-ge_wf geo-lsep_wf geo-colinear_wf geo-between-out geo-out_wf geo-out_inversion geo-left-out-better euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination hypothesis independent_functionElimination because_Cache universeIsType isectElimination applyEquality sqequalRule inhabitedIsType productIsType functionIsType independent_pairFormation instantiate independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,V:Point.    (C  leftof  AB  {}\mRightarrow{}  A  \mneq{}  V  {}\mRightarrow{}  A\_V\_B  {}\mRightarrow{}  C  leftof  AV)



Date html generated: 2019_10_16-PM-01_32_21
Last ObjectModification: 2018_10_24-PM-02_05_52

Theory : euclidean!plane!geometry


Home Index