Nuprl Lemma : between-preserves-left-1
∀e:EuclideanPlane. ∀A,B,C,V:Point.  (C leftof AB 
⇒ A_B_V 
⇒ C leftof AV)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-left: a leftof bc
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
left-all-symmetry, 
geo-point_wf, 
all_wf, 
geo-sep_wf, 
geo-between_wf, 
or_wf, 
geo-left_wf, 
left-convex
Rules used in proof : 
independent_isectElimination, 
instantiate, 
inlFormation, 
independent_pairFormation, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
applyEquality, 
isectElimination, 
productEquality, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,V:Point.    (C  leftof  AB  {}\mRightarrow{}  A\_B\_V  {}\mRightarrow{}  C  leftof  AV)
Date html generated:
2019_10_16-PM-01_32_11
Last ObjectModification:
2018_10_24-PM-02_06_07
Theory : euclidean!plane!geometry
Home
Index