Nuprl Lemma : geo-perp-in_wf

[e:BasicGeometry]. ∀[x,a,b,c,d:Point].  (ab  ⊥cd ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd basic-geometry: BasicGeometry geo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T geo-perp-in: ab  ⊥cd prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x] guard: {T} uimplies: supposing a
Lemmas referenced :  geo-colinear_wf all_wf geo-point_wf right-angle_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination isect_memberEquality

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[x,a,b,c,d:Point].    (ab    \mbot{}x  cd  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-00_03_24
Last ObjectModification: 2018_05_14-PM-03_18_15

Theory : euclidean!plane!geometry


Home Index