Nuprl Lemma : geo-length_wf1

[e:BasicGeometry]. ∀[s:geo-segment(e)].  (|s| ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  geo-length: |s| geo-segment: geo-segment(e) basic-geometry: BasicGeometry geo-X: X geo-O: O geo-between: a_b_c geo-point: Point uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  cand: c∧ B implies:  Q so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B all: x:A. B[x] basic-geometry: BasicGeometry geo-length: |s| member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-segment_wf geo-point_wf geo-congruent_wf geo-between_wf subtype_rel_sets geo-seg2_wf geo-seg1_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf geo-X_wf geo-sep-O-X geo-O_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality productElimination lambdaFormation setEquality productEquality lambdaEquality independent_isectElimination instantiate applyEquality hypothesisEquality dependent_set_memberEquality dependent_functionElimination hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[s:geo-segment(e)].    (|s|  \mmember{}  \{p:Point|  O\_X\_p\}  )



Date html generated: 2017_10_02-PM-04_51_45
Last ObjectModification: 2017_08_05-AM-09_09_56

Theory : euclidean!plane!geometry


Home Index