Nuprl Lemma : geo-seg2_wf

[e:EuclideanPlaneStructure]. ∀[s:geo-segment(e)].  (geo-seg2(s) ∈ Point)


Proof




Definitions occuring in Statement :  geo-seg2: geo-seg2(s) geo-segment: geo-segment(e) euclidean-plane-structure: EuclideanPlaneStructure geo-point: Point uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  pi2: snd(t) geo-segment: geo-segment(e) geo-seg2: geo-seg2(s) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  euclidean-plane-structure_wf geo-segment_wf
Rules used in proof :  because_Cache isect_memberEquality isectElimination extract_by_obid equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:EuclideanPlaneStructure].  \mforall{}[s:geo-segment(e)].    (geo-seg2(s)  \mmember{}  Point)



Date html generated: 2017_10_02-PM-04_44_18
Last ObjectModification: 2017_08_05-AM-09_26_00

Theory : euclidean!plane!geometry


Home Index