Nuprl Lemma : geo-sep-O-X

e:EuclideanPlaneStructure. O ≠ X


Proof




Definitions occuring in Statement :  geo-X: X geo-O: O euclidean-plane-structure: EuclideanPlaneStructure geo-sep: a ≠ b all: x:A. B[x]
Definitions unfolded in proof :  implies:  Q prop: exists: x:A. B[x] sq_exists: x:{A| B[x]} so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T geo-O: O geo-X: X all: x:A. B[x] squash: T sq_stable: SqStable(P) pi2: snd(t) pi1: fst(t)
Lemmas referenced :  euclidean-plane-structure_wf equal_wf geo-sep_wf sq_exists_wf euclidean-plane-structure-subtype geo-point_wf exists_wf geo-nontrivial_wf sq_stable__geo-sep
Rules used in proof :  independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity because_Cache lambdaEquality sqequalRule applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination baseClosed imageMemberEquality rename setElimination productElimination

Latex:
\mforall{}e:EuclideanPlaneStructure.  O  \mneq{}  X



Date html generated: 2017_10_02-PM-03_28_30
Last ObjectModification: 2017_08_04-PM-08_50_39

Theory : euclidean!plane!geometry


Home Index