Nuprl Lemma : geo-sep-O-X
∀e:EuclideanPlaneStructure. O ≠ X
Proof
Definitions occuring in Statement : 
geo-X: X
, 
geo-O: O
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
geo-sep: a ≠ b
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
geo-O: O
, 
geo-X: X
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
pi2: snd(t)
, 
pi1: fst(t)
Lemmas referenced : 
euclidean-plane-structure_wf, 
equal_wf, 
geo-sep_wf, 
sq_exists_wf, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
exists_wf, 
geo-nontrivial_wf, 
sq_stable__geo-sep
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
rename, 
setElimination, 
productElimination
Latex:
\mforall{}e:EuclideanPlaneStructure.  O  \mneq{}  X
Date html generated:
2017_10_02-PM-03_28_30
Last ObjectModification:
2017_08_04-PM-08_50_39
Theory : euclidean!plane!geometry
Home
Index