Nuprl Lemma : geo-colinear-append
∀e:EuclideanPlane. ∀L1,L2:Point List.
  ((∃A,B:Point. (A ≠ B ∧ ((A ∈ L1) ∧ (A ∈ L2)) ∧ (B ∈ L1) ∧ (B ∈ L2)))
  
⇒ geo-colinear-set(e; L1)
  
⇒ geo-colinear-set(e; L2)
  
⇒ geo-colinear-set(e; L1 @ L2))
Proof
Definitions occuring in Statement : 
geo-colinear-set: geo-colinear-set(e; L)
, 
euclidean-plane: EuclideanPlane
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
l_member: (x ∈ l)
, 
append: as @ bs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
or: P ∨ Q
, 
stable: Stable{P}
, 
geo-eq: a ≡ b
Lemmas referenced : 
geo-colinear-set_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
l_member_wf, 
list_wf, 
l_all_iff, 
l_all_wf2, 
geo-colinear_wf, 
l_all_append, 
append_wf, 
geo-colinear-transitivity, 
geo-colinear-cycle, 
stable__colinear, 
false_wf, 
or_wf, 
not_wf, 
istype-void, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
geo-colinear-permute, 
geo-colinear_functionality, 
geo-eq_weakening, 
geo-eq_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
productIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
lambdaEquality_alt, 
setIsType, 
independent_functionElimination, 
independent_pairFormation, 
functionEquality, 
functionIsType, 
unionIsType, 
unionElimination, 
voidElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}L1,L2:Point  List.
    ((\mexists{}A,B:Point.  (A  \mneq{}  B  \mwedge{}  ((A  \mmember{}  L1)  \mwedge{}  (A  \mmember{}  L2))  \mwedge{}  (B  \mmember{}  L1)  \mwedge{}  (B  \mmember{}  L2)))
    {}\mRightarrow{}  geo-colinear-set(e;  L1)
    {}\mRightarrow{}  geo-colinear-set(e;  L2)
    {}\mRightarrow{}  geo-colinear-set(e;  L1  @  L2))
Date html generated:
2019_10_16-PM-01_14_32
Last ObjectModification:
2018_12_11-AM-11_39_39
Theory : euclidean!plane!geometry
Home
Index