Nuprl Lemma : geo-eq_inversion

[e:EuclideanPlane]. ∀[a,b:Point].  a ≡ supposing b ≡ a


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-eq: a ≡ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B prop: false: False and: P ∧ Q all: x:A. B[x] implies:  Q not: ¬A geo-eq: a ≡ b uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-point_wf geo-eq_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-sep_wf euclidean-plane-axioms
Rules used in proof :  equalitySymmetry equalityTransitivity isect_memberEquality independent_isectElimination instantiate lambdaEquality sqequalRule because_Cache applyEquality isectElimination voidElimination hypothesis productElimination hypothesisEquality dependent_functionElimination extract_by_obid thin independent_functionElimination lambdaFormation sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b:Point].    a  \mequiv{}  b  supposing  b  \mequiv{}  a



Date html generated: 2017_10_02-PM-03_28_06
Last ObjectModification: 2017_08_07-AM-09_57_23

Theory : euclidean!plane!geometry


Home Index