Nuprl Lemma : geo-colinear-transitivity

e:EuclideanPlane
  ∀[A,C,B,D:Point].  (Colinear(A;B;C)  Colinear(B;C;D)  B ≠  {Colinear(A;C;D) ∧ Colinear(A;B;D)})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  false: False geo-colinear: Colinear(a;b;c) uimplies: supposing a subtype_rel: A ⊆B prop: not: ¬A cand: c∧ B rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} implies:  Q member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-between_wf geo-colinear_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-sep_wf not_wf geo-lsep_wf lsep-implies-sep not-lsep-iff-colinear colinear-lsep lsep-all-sym geo-sep-sym
Rules used in proof :  voidElimination isect_memberEquality independent_pairEquality lambdaEquality independent_isectElimination instantiate productEquality addLevel sqequalRule because_Cache applyEquality isectElimination independent_functionElimination independent_pairFormation productElimination hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[A,C,B,D:Point].
        (Colinear(A;B;C)  {}\mRightarrow{}  Colinear(B;C;D)  {}\mRightarrow{}  B  \mneq{}  C  {}\mRightarrow{}  \{Colinear(A;C;D)  \mwedge{}  Colinear(A;B;D)\})



Date html generated: 2017_10_02-PM-03_29_40
Last ObjectModification: 2017_08_08-PM-00_35_18

Theory : euclidean!plane!geometry


Home Index