Nuprl Lemma : geo-colinear-transitivity
∀e:EuclideanPlane
  ∀[A,C,B,D:Point].  (Colinear(A;B;C) ⇒ Colinear(B;C;D) ⇒ B ≠ C ⇒ {Colinear(A;C;D) ∧ Colinear(A;B;D)})
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-colinear: Colinear(a;b;c), 
geo-sep: a ≠ b, 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
false: False, 
geo-colinear: Colinear(a;b;c), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
not: ¬A, 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-between_wf, 
geo-colinear_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-sep_wf, 
not_wf, 
geo-lsep_wf, 
lsep-implies-sep, 
not-lsep-iff-colinear, 
colinear-lsep, 
lsep-all-sym, 
geo-sep-sym
Rules used in proof : 
voidElimination, 
isect_memberEquality, 
independent_pairEquality, 
lambdaEquality, 
independent_isectElimination, 
instantiate, 
productEquality, 
addLevel, 
sqequalRule, 
because_Cache, 
applyEquality, 
isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[A,C,B,D:Point].
        (Colinear(A;B;C)  {}\mRightarrow{}  Colinear(B;C;D)  {}\mRightarrow{}  B  \mneq{}  C  {}\mRightarrow{}  \{Colinear(A;C;D)  \mwedge{}  Colinear(A;B;D)\})
Date html generated:
2017_10_02-PM-03_29_40
Last ObjectModification:
2017_08_08-PM-00_35_18
Theory : euclidean!plane!geometry
Home
Index