Nuprl Lemma : geo-colinear-set_wf
∀[e:EuclideanPlaneStructure]. ∀[L:Point List].  (geo-colinear-set(e; L) ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-colinear-set: geo-colinear-set(e; L)
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
geo-point: Point
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
euclidean-plane-structure_wf, 
list_wf, 
geo-colinear_wf, 
l_member_wf, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
l_all_wf2
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
setEquality, 
rename, 
setElimination, 
because_Cache, 
lambdaFormation, 
lambdaEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[e:EuclideanPlaneStructure].  \mforall{}[L:Point  List].    (geo-colinear-set(e;  L)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-04_39_56
Last ObjectModification:
2017_08_07-AM-11_04_31
Theory : euclidean!plane!geometry
Home
Index