Nuprl Lemma : geo-colinear-set_wf

[e:EuclideanPlaneStructure]. ∀[L:Point List].  (geo-colinear-set(e; L) ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-colinear-set: geo-colinear-set(e; L) euclidean-plane-structure: EuclideanPlaneStructure geo-point: Point list: List uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] prop: all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B geo-colinear-set: geo-colinear-set(e; L) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  euclidean-plane-structure_wf list_wf geo-colinear_wf l_member_wf euclidean-plane-structure-subtype geo-point_wf l_all_wf2
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality dependent_functionElimination setEquality rename setElimination because_Cache lambdaFormation lambdaEquality hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:EuclideanPlaneStructure].  \mforall{}[L:Point  List].    (geo-colinear-set(e;  L)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-04_39_56
Last ObjectModification: 2017_08_07-AM-11_04_31

Theory : euclidean!plane!geometry


Home Index