Nuprl Lemma : geo-colinear-cycle

e:EuclideanPlane. ∀a,b,c:Point.  (Colinear(a;b;c)  Colinear(c;a;b))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-colinear: Colinear(a;b;c) not: ¬A member: t ∈ T and: P ∧ Q cand: c∧ B false: False uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a
Lemmas referenced :  geo-between_wf istype-void geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution introduction independent_functionElimination thin productElimination cut hypothesis independent_pairFormation voidElimination sqequalRule productIsType functionIsType universeIsType extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache instantiate independent_isectElimination inhabitedIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (Colinear(a;b;c)  {}\mRightarrow{}  Colinear(c;a;b))



Date html generated: 2019_10_16-PM-01_14_22
Last ObjectModification: 2018_11_12-PM-03_10_37

Theory : euclidean!plane!geometry


Home Index