Nuprl Lemma : geo-proper-extend-exists

e:BasicGeometry. ∀q,a,b,c:Point.  (q ≠  b ≠  (∃x:Point. (q-a-x ∧ ax ≅ bc)))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: cand: c∧ B and: P ∧ Q exists: x:A. B[x] implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  geo-point_wf geo-sep_wf geo-congruent_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-strict-between_wf geo-extend-exists1
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality isectElimination productEquality independent_pairFormation dependent_pairFormation productElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}e:BasicGeometry.  \mforall{}q,a,b,c:Point.    (q  \mneq{}  a  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  (\mexists{}x:Point.  (q-a-x  \mwedge{}  ax  \00D0  bc)))



Date html generated: 2017_10_02-PM-04_50_50
Last ObjectModification: 2017_08_05-AM-09_43_59

Theory : euclidean!plane!geometry


Home Index