Nuprl Lemma : geo-proper-extend-exists
∀e:BasicGeometry. ∀q,a,b,c:Point.  (q ≠ a 
⇒ b ≠ c 
⇒ (∃x:Point. (q-a-x ∧ ax ≅ bc)))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-strict-between: a-b-c
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-sep_wf, 
geo-congruent_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-strict-between_wf, 
geo-extend-exists1
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
productEquality, 
independent_pairFormation, 
dependent_pairFormation, 
productElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}e:BasicGeometry.  \mforall{}q,a,b,c:Point.    (q  \mneq{}  a  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  (\mexists{}x:Point.  (q-a-x  \mwedge{}  ax  \00D0  bc)))
Date html generated:
2017_10_02-PM-04_50_50
Last ObjectModification:
2017_08_05-AM-09_43_59
Theory : euclidean!plane!geometry
Home
Index