Nuprl Lemma : geo-extend-exists1

e:BasicGeometry. ∀q,a,b,c:Point.  (q ≠  (∃x:Point. ((b ≠  q-a-x) ∧ ax ≅ bc)))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} cand: c∧ B basic-geometry: BasicGeometry exists: x:A. B[x] and: P ∧ Q prop: subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-strict-between_wf geo-sep_wf geo-extend-property1
Rules used in proof :  independent_isectElimination instantiate functionEquality productEquality independent_pairFormation setElimination dependent_pairFormation productElimination sqequalRule applyEquality isectElimination hypothesis because_Cache dependent_set_memberEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut rename lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}q,a,b,c:Point.    (q  \mneq{}  a  {}\mRightarrow{}  (\mexists{}x:Point.  ((b  \mneq{}  c  {}\mRightarrow{}  q-a-x)  \mwedge{}  ax  \00D0  bc)))



Date html generated: 2017_10_02-PM-04_50_46
Last ObjectModification: 2017_08_05-AM-09_43_57

Theory : euclidean!plane!geometry


Home Index