Nuprl Lemma : geo-extend-property1

e:BasicGeometry. ∀a:Point. ∀b:{b:Point| a ≠ b} . ∀c,d:Point.  (bextend ab by cd ≅ cd ∧ (c ≠  a-b-extend ab by cd))


Proof




Definitions occuring in Statement :  geo-extend: extend qa by bc basic-geometry: BasicGeometry geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  squash: T sq_stable: SqStable(P) cand: c∧ B implies:  Q so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} prop: subtype_rel: A ⊆B basic-geometry: BasicGeometry uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] geo-strict-between: a-b-c
Lemmas referenced :  sq_stable__geo-strict-between sq_stable__all sq_stable__geo-congruent sq_stable__and geo-strict-between_wf equal_wf geo-congruent_wf geo-between_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-point_wf set_wf geo-sep_wf geo-congruent-sep sq_stable__geo-sep
Rules used in proof :  imageElimination baseClosed imageMemberEquality independent_pairFormation functionEquality isect_memberEquality productElimination independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity productEquality lambdaEquality independent_isectElimination instantiate sqequalRule because_Cache applyEquality dependent_set_memberEquality hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .  \mforall{}c,d:Point.
    (bextend  ab  by  cd  \00D0  cd  \mwedge{}  (c  \mneq{}  d  {}\mRightarrow{}  a-b-extend  ab  by  cd))



Date html generated: 2017_10_02-PM-04_50_38
Last ObjectModification: 2017_08_05-AM-09_43_52

Theory : euclidean!plane!geometry


Home Index