Nuprl Lemma : geo-reflected-right-triangles-congruent
∀e:BasicGeometry. ∀a,b,c,d:Point.  (a # bc 
⇒ Rcba 
⇒ a=b=d 
⇒ Cong3(abc,dbc))
Proof
Definitions occuring in Statement : 
geo-cong-tri: Cong3(abc,a'b'c')
, 
basic-geometry: BasicGeometry
, 
geo-lsep: a # bc
, 
right-angle: Rabc
, 
geo-midpoint: a=m=b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
right-angle: Rabc
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
geo-midpoint: a=m=b
, 
and: P ∧ Q
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced : 
geo-midpoint-symmetry, 
geo-midpoint_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
right-angle_wf, 
geo-lsep_wf, 
geo-point_wf, 
geo-construction-unicity, 
subtype_rel_self, 
basic-geometry-_wf, 
midpoint-sep, 
geo-between-sep, 
lsep-implies-sep, 
geo-between-symmetry, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-congruent_functionality, 
geo-eq_weakening, 
geo-congruent-refl, 
geo-sas2, 
geo-sep-sym, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-right-angles-congruent, 
geo-cong-angle-symm3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (a  \#  bc  {}\mRightarrow{}  Rcba  {}\mRightarrow{}  a=b=d  {}\mRightarrow{}  Cong3(abc,dbc))
Date html generated:
2019_10_16-PM-01_53_18
Last ObjectModification:
2019_03_20-PM-01_20_16
Theory : euclidean!plane!geometry
Home
Index