Nuprl Lemma : in-hull-sorted

g:OrientedPlane. ∀xs:{xs:Point List| geo-general-position(g;xs)} . ∀i,j:ℕ||xs||.
  ((¬(i j ∈ ℤ))
   ij ∈ Hull(xs)
   (∃ps:{k:ℕ||xs||| (k i ∈ ℤ)) ∧ (k j ∈ ℤ))}  List
       (permutation({k:ℕ||xs||| (k i ∈ ℤ)) ∧ (k j ∈ ℤ))} ;ps;
                    filter(λk.((¬b(k =z i)) ∧b b(k =z j)));upto(||xs||)))
       ∧ sorted-by(λx,y. ((¬(x y ∈ ℤ))  (↑yi));ps))))


Proof




Definitions occuring in Statement :  in-hull: ij ∈ Hull(xs) left-test: jk geo-general-position: geo-general-position(g;xs) oriented-plane: OrientedPlane geo-point: Point permutation: permutation(T;L1;L2) upto: upto(n) sorted-by: sorted-by(R;L) length: ||as|| filter: filter(P;l) list: List band: p ∧b q int_seg: {i..j-} bnot: ¬bb assert: b eq_int: (i =z j) all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  lambda: λx.A[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) exists: x:A. B[x] bnot: ¬bb ifthenelse: if then else fi  btrue: tt assert: b bfalse: ff false: False band: p ∧b q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) cand: c∧ B sorted-by: sorted-by(R;L) decidable: Dec(P) hull-cmp: hull-cmp(g;xs;i;j) true: True nequal: a ≠ b ∈  less_than': less_than'(a;b) it: unit: Unit bool: 𝔹

Latex:
\mforall{}g:OrientedPlane.  \mforall{}xs:\{xs:Point  List|  geo-general-position(g;xs)\}  .  \mforall{}i,j:\mBbbN{}||xs||.
    ((\mneg{}(i  =  j))
    {}\mRightarrow{}  ij  \mmember{}  Hull(xs)
    {}\mRightarrow{}  (\mexists{}ps:\{k:\mBbbN{}||xs|||  (\mneg{}(k  =  i))  \mwedge{}  (\mneg{}(k  =  j))\}    List
              (permutation(\{k:\mBbbN{}||xs|||  (\mneg{}(k  =  i))  \mwedge{}  (\mneg{}(k  =  j))\}  ;ps;
                                        filter(\mlambda{}k.((\mneg{}\msubb{}(k  =\msubz{}  i))  \mwedge{}\msubb{}  (\mneg{}\msubb{}(k  =\msubz{}  j)));upto(||xs||)))
              \mwedge{}  sorted-by(\mlambda{}x,y.  ((\mneg{}(x  =  y))  {}\mRightarrow{}  (\muparrow{}x  L  yi));ps))))



Date html generated: 2020_05_20-AM-10_02_53
Last ObjectModification: 2020_01_13-PM-03_51_03

Theory : euclidean!plane!geometry


Home Index