Step
*
1
of Lemma
interior-point-cong-angle-transfer
.....antecedent.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. x : Point
9. y : Point
10. z : Point
11. ¬out(y xz)
12. p : Point
13. p' : Point
14. x' : Point
15. z' : Point
16. abc ≅a xyp
17. y_p'_p
18. out(y xx')
19. out(y zz')
20. ¬x_y_p
21. x'_p'_z'
22. p' ≠ z'
23. def ≅a xyz
24. x # yz ∨ d # ef
⊢ def ≅a x'yz'
BY
{ (InstLemma `out-preserves-angle-cong_1` [⌜g⌝;⌜d⌝;⌜e⌝;⌜f⌝;⌜x⌝;⌜y⌝;⌜z⌝;⌜d⌝;⌜f⌝;⌜x'⌝;⌜z'⌝]⋅
THEN Auto
THEN D -2
THEN EAuto 1) }
Latex:
Latex:
.....antecedent.....
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. e : Point
7. f : Point
8. x : Point
9. y : Point
10. z : Point
11. \mneg{}out(y xz)
12. p : Point
13. p' : Point
14. x' : Point
15. z' : Point
16. abc \mcong{}\msuba{} xyp
17. y\_p'\_p
18. out(y xx')
19. out(y zz')
20. \mneg{}x\_y\_p
21. x'\_p'\_z'
22. p' \mneq{} z'
23. def \mcong{}\msuba{} xyz
24. x \# yz \mvee{} d \# ef
\mvdash{} def \mcong{}\msuba{} x'yz'
By
Latex:
(InstLemma `out-preserves-angle-cong\_1` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}x'\mkleeneclose{};\mkleeneopen{}z'\mkleeneclose{}]\mcdot{}
THEN Auto
THEN D -2
THEN EAuto 1)
Home
Index