Nuprl Lemma : interior-point-cong-angle-transfer

g:EuclideanPlane. ∀a,b,c,d,e,f,x,y,z:Point.
  (abc < xyz
   def ≅a xyz
   (x yz ∨ ef)
   (∃p',d',f':Point. (d'ep' ≅a abc ∧ d'_p'_f' ∧ p' ≠ f' ∧ out(e ff') ∧ out(e dd'))))


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz geo-out: out(p ab) geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-lt-angle: abc < xyz and: P ∧ Q exists: x:A. B[x] member: t ∈ T or: P ∨ Q uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry geo-cong-angle: abc ≅a xyz geo-cong-tri: Cong3(abc,a'b'c') uiff: uiff(P;Q) cand: c∧ B squash: T true: True geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m geo-out: out(p ab)
Lemmas referenced :  cong-angle-out-exists-cong3 geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-cong-angle_wf geo-lt-angle_wf geo-point_wf geo-out_weakening geo-eq_weakening geo-sep-sym out-preserves-angle-cong_1 geo-congruent-between-exists geo-congruent-iff-length geo-between-symmetry euclidean-plane-axioms geo-congruent-symmetry geo-congruent-sep geo-out_inversion geo-between_wf geo-sep_wf geo-out_wf geo-inner-five-segment geo-add-length-between geo-length-flip geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-comm out-preserves-lsep lsep-symmetry lsep-all-sym colinear-lsep geo-colinear-permute geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than lsep-implies-sep geo-between-sep cong-tri-implies-cong-angle2 geo-cong-angle-transitivity out-cong-angle geo-between-out geo-cong-angle-symm2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination sqequalRule unionIsType universeIsType isectElimination applyEquality hypothesis instantiate independent_isectElimination because_Cache inhabitedIsType equalitySymmetry dependent_pairFormation_alt independent_pairFormation productIsType equalityTransitivity lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed unionElimination isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt approximateComputation

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f,x,y,z:Point.
    (abc  <  xyz
    {}\mRightarrow{}  def  \mcong{}\msuba{}  xyz
    {}\mRightarrow{}  (x  \#  yz  \mvee{}  d  \#  ef)
    {}\mRightarrow{}  (\mexists{}p',d',f':Point.  (d'ep'  \mcong{}\msuba{}  abc  \mwedge{}  d'\_p'\_f'  \mwedge{}  p'  \mneq{}  f'  \mwedge{}  out(e  ff')  \mwedge{}  out(e  dd'))))



Date html generated: 2019_10_16-PM-01_51_07
Last ObjectModification: 2019_09_12-AM-11_35_36

Theory : euclidean!plane!geometry


Home Index