Nuprl Lemma : geo-add-length-comm

[e:BasicGeometry]. ∀[x,y:Length].  (x x ∈ Length)


Proof




Definitions occuring in Statement :  geo-add-length: q geo-length-type: Length basic-geometry: BasicGeometry uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) stable: Stable{P} false: False not: ¬A or: P ∨ Q iff: ⇐⇒ Q basic-geometry-: BasicGeometry- so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: so_apply: x[s] uimplies: supposing a guard: {T} so_lambda: λ2x.t[x] subtype_rel: A ⊆B euclidean-plane: EuclideanPlane basic-geometry: BasicGeometry geo-add-length: q implies:  Q all: x:A. B[x] geo-eq: a ≡ b and: P ∧ Q quotient: x,y:A//B[x; y] geo-length-type: Length member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  geo-congruence-identity-sym geo-three-segment geo-length-flip geo-congruent-iff-length geo-congruent-symmetry geo-sep-O-X geo-construction-unicity minimal-not-not-excluded-middle minimal-double-negation-hyp-elim istype-void not_wf false_wf stable__not geo-congruent_functionality geo-eq_weakening geo-between_functionality geo-congruent_wf geo-between-exchange4 basic-geometry-_wf subtype_rel_self geo-between-exchange3 geo-between-inner-trans geo-between-symmetry geo-length-equiv geo-eq_wf quotient-member-eq geo-extend_wf geo-Op-sep geo-sep_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype euclidean-plane-subtype euclidean-plane-structure-subtype geo-X_wf geo-between_wf geo-point_wf subtype_rel_sets_simple geo-O_wf geo-extend-property
Rules used in proof :  voidElimination unionElimination unionIsType functionIsType functionEquality unionEquality isectIsTypeImplies axiomEquality isect_memberEquality_alt applyLambdaEquality sqequalBase equalityIstype productIsType independent_functionElimination setIsType setEquality dependent_set_memberEquality_alt independent_isectElimination instantiate universeIsType lambdaEquality_alt isectElimination applyEquality setElimination hypothesisEquality dependent_functionElimination extract_by_obid lambdaFormation_alt inhabitedIsType equalitySymmetry equalityTransitivity rename productElimination thin promote_hyp pertypeElimination sqequalRule hypothesis because_Cache pointwiseFunctionalityForEquality sqequalHypSubstitution cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[x,y:Length].    (x  +  y  =  y  +  x)



Date html generated: 2019_10_29-AM-09_13_43
Last ObjectModification: 2019_10_18-PM-03_16_55

Theory : euclidean!plane!geometry


Home Index