Nuprl Lemma : geo-extend_wf
∀e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| q ≠ a} . ∀b,c:Point.  (extend qa by bc ∈ {x:Point| q_a_x ∧ ax ≅ bc} )
Proof
Definitions occuring in Statement : 
geo-extend: extend qa by bc
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sq_exists: ∃x:{A| B[x]}
, 
geo-extend: extend qa by bc
, 
geo-SCO: SCO(a;b;c;d)
, 
pi1: fst(t)
, 
geo-SC: SC(a;b;c;d)
, 
record-select: r.x
, 
geo-extend-construction-ext, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
geo-extend-construction-ext, 
all_wf, 
euclidean-plane_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
sq_exists_wf, 
geo-between_wf, 
geo-congruent_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
introduction, 
isectElimination, 
independent_isectElimination, 
setEquality, 
because_Cache, 
setElimination, 
rename, 
productEquality, 
cumulativity, 
universeEquality, 
dependent_set_memberEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  q  \mneq{}  a\}  .  \mforall{}b,c:Point.
    (extend  qa  by  bc  \mmember{}  \{x:Point|  q\_a\_x  \mwedge{}  ax  \00D0  bc\}  )
Date html generated:
2017_10_02-PM-04_50_30
Last ObjectModification:
2017_08_09-PM-06_40_41
Theory : euclidean!plane!geometry
Home
Index