Nuprl Lemma : geo-extend_wf

e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| q ≠ a} . ∀b,c:Point.  (extend qa by bc ∈ {x:Point| q_a_x ∧ ax ≅ bc} )


Proof




Definitions occuring in Statement :  geo-extend: extend qa by bc euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sq_exists: x:{A| B[x]} geo-extend: extend qa by bc geo-SCO: SCO(a;b;c;d) pi1: fst(t) geo-SC: SC(a;b;c;d) record-select: r.x geo-extend-construction-ext subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] guard: {T} uimplies: supposing a prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  geo-extend-construction-ext all_wf euclidean-plane_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf sq_exists_wf geo-between_wf geo-congruent_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule applyEquality thin instantiate extract_by_obid hypothesis lambdaEquality sqequalHypSubstitution hypothesisEquality introduction isectElimination independent_isectElimination setEquality because_Cache setElimination rename productEquality cumulativity universeEquality dependent_set_memberEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  q  \mneq{}  a\}  .  \mforall{}b,c:Point.
    (extend  qa  by  bc  \mmember{}  \{x:Point|  q\_a\_x  \mwedge{}  ax  \00D0  bc\}  )



Date html generated: 2017_10_02-PM-04_50_30
Last ObjectModification: 2017_08_09-PM-06_40_41

Theory : euclidean!plane!geometry


Home Index