Nuprl Lemma : geo-extend-construction-ext
∀e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| q ≠ a} . ∀b,c:Point.  (∃x:{Point| (q_a_x ∧ ax ≅ bc)})
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
member: t ∈ T
, 
geo-extend-construction, 
extend-using-SC, 
Euclid-Prop2-ext, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
geo-extend-construction, 
extend-using-SC, 
Euclid-Prop2-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  q  \mneq{}  a\}  .  \mforall{}b,c:Point.    (\mexists{}x:\{Point|  (q\_a\_x  \mwedge{}  ax  \00D0  bc)\})
Date html generated:
2017_10_02-PM-04_50_10
Last ObjectModification:
2017_08_09-PM-06_40_07
Theory : euclidean!plane!geometry
Home
Index