Nuprl Lemma : geo-extend-construction-ext

e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| q ≠ a} . ∀b,c:Point.  (∃x:{Point| (q_a_x ∧ ax ≅ bc)})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]} and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T geo-extend-construction extend-using-SC Euclid-Prop2-ext ifthenelse: if then else fi 
Lemmas referenced :  geo-extend-construction extend-using-SC Euclid-Prop2-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  q  \mneq{}  a\}  .  \mforall{}b,c:Point.    (\mexists{}x:\{Point|  (q\_a\_x  \mwedge{}  ax  \00D0  bc)\})



Date html generated: 2017_10_02-PM-04_50_10
Last ObjectModification: 2017_08_09-PM-06_40_07

Theory : euclidean!plane!geometry


Home Index