Nuprl Lemma : Euclid-Prop2-ext
∀e:EuclideanPlane. ∀a,b,c:Point.  (∃x:Point [ax ≅ bc])
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
Definitions unfolded in proof : 
member: t ∈ T
, 
record-select: r.x
, 
ifthenelse: if b then t else f fi 
, 
Euclid-Prop2, 
geo-sep-exists, 
geo-sep-or, 
Euclid-Prop2-lemma-ext, 
geo-sep-sym, 
basic-geo-sep-sym, 
sq_stable__geo-axioms, 
sq_stable-geo-axioms-if, 
sq_stable__geo-between, 
sq_stable__geo-congruent, 
sq_stable__geo-gt-prim, 
sq_stable__geo-lsep, 
any: any x
, 
sq_stable__and, 
sq_stable__all, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda4, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (\mexists{}x:Point  [ax  \mcong{}  bc])
Date html generated:
2020_05_20-AM-09_51_13
Last ObjectModification:
2020_01_27-PM-07_08_35
Theory : euclidean!plane!geometry
Home
Index