Nuprl Lemma : Euclid-Prop2-lemma-ext

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} . ∀v:Point.  (∃x:Point [ax ≅ bv])


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T eqtri: Δ(a;b) prop2-lemma: lemma2(a;b;c) let: let Euclid-Prop2-lemma sq_stable__and sq_stable__geo-congruent sq_stable__geo-left Euclid-Prop1-left-ext extend-using-SC
Lemmas referenced :  Euclid-Prop2-lemma sq_stable__and sq_stable__geo-congruent sq_stable__geo-left Euclid-Prop1-left-ext extend-using-SC
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .  \mforall{}v:Point.    (\mexists{}x:Point  [ax  \mcong{}  bv])



Date html generated: 2019_10_16-PM-01_15_58
Last ObjectModification: 2019_09_27-PM-04_45_54

Theory : euclidean!plane!geometry


Home Index