Nuprl Lemma : Euclid-Prop2

e:EuclideanPlane. ∀a,b,c:Point.  (∃x:{Point| ax ≅ bc})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]}
Definitions unfolded in proof :  uimplies: supposing a guard: {T} or: P ∨ Q prop: subtype_rel: A ⊆B uall: [x:A]. B[x] euclidean-plane: EuclideanPlane exists: x:A. B[x] member: t ∈ T all: x:A. B[x] sq_exists: x:{A| B[x]}
Lemmas referenced :  geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf geo-sep_wf geo-sep-or geo-sep-exists Euclid-Prop2-lemma-ext geo-congruent_wf geo-congruent-transitivity
Rules used in proof :  independent_isectElimination instantiate unionElimination sqequalRule applyEquality isectElimination dependent_set_memberEquality because_Cache hypothesis rename setElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (\mexists{}x:\{Point|  ax  \00D0  bc\})



Date html generated: 2017_10_02-PM-04_49_47
Last ObjectModification: 2017_08_06-PM-02_51_00

Theory : euclidean!plane!geometry


Home Index