Nuprl Lemma : Euclid-Prop2
∀e:EuclideanPlane. ∀a,b,c:Point.  (∃x:{Point| ax ≅ bc})
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
or: P ∨ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
Lemmas referenced : 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
geo-sep_wf, 
geo-sep-or, 
geo-sep-exists, 
Euclid-Prop2-lemma-ext, 
geo-congruent_wf, 
geo-congruent-transitivity
Rules used in proof : 
independent_isectElimination, 
instantiate, 
unionElimination, 
sqequalRule, 
applyEquality, 
isectElimination, 
dependent_set_memberEquality, 
because_Cache, 
hypothesis, 
rename, 
setElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (\mexists{}x:\{Point|  ax  \00D0  bc\})
Date html generated:
2017_10_02-PM-04_49_47
Last ObjectModification:
2017_08_06-PM-02_51_00
Theory : euclidean!plane!geometry
Home
Index