Nuprl Lemma : geo-extend-construction

e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| q ≠ a} . ∀b,c:Point.  (∃x:{Point| (q_a_x ∧ ax ≅ bc)})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]} and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] sq_exists: x:{A| B[x]} member: t ∈ T all: x:A. B[x] cand: c∧ B and: P ∧ Q exists: x:A. B[x] squash: T sq_stable: SqStable(P) implies:  Q euclidean-plane: EuclideanPlane
Lemmas referenced :  geo-sep_wf set_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-point_wf Euclid-Prop2-ext geo-congruent_wf geo-between_wf sq_stable__geo-sep extend-using-SC geo-congruent-transitivity
Rules used in proof :  lambdaEquality because_Cache sqequalRule independent_isectElimination instantiate applyEquality isectElimination hypothesis rename setElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productEquality independent_pairFormation dependent_set_memberFormation productElimination imageElimination baseClosed imageMemberEquality independent_functionElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  q  \mneq{}  a\}  .  \mforall{}b,c:Point.    (\mexists{}x:\{Point|  (q\_a\_x  \mwedge{}  ax  \00D0  bc)\})



Date html generated: 2017_10_02-PM-04_49_54
Last ObjectModification: 2017_08_06-PM-02_53_26

Theory : euclidean!plane!geometry


Home Index